ANALISIS KANDUNGAN CESIUM DAN URANIUM DALAM BAHAN BAKAR U₃Si₂/AI PASCA IRADIASI

Boybul, Yanlinastuti, Dian Anggraini, Arif Nugroho, Rosika Kriswarini, Aslina Br Ginting

Pusat Teknologi Bahan Bakar Nuklir – BATAN Kawasan Puspiptek, Serpong, Tangerang Selatan, 15314 e-mail: boybul@batan.go.id

(Naskah diterima: 15-06-2017, Naskah direvisi: 22-06-2017, Naskah disetujui: 03-07-2017)

ABSTRAK

ANALISIS KANDUNGAN CESIUM DAN URANIUM DALAM BAHAN BAKAR U3Si2/AI PASCA

IRADIASI. Telah dilakukan pemisahan hasil fisi isotop 137Cs dan 235U dengan tujuan untuk mengetahui kandungan isotop ¹³⁷Cs maupun ²³⁵U dalam PEB U₃Si₂/AI dengan densitas 2,96 gU/cm³ pasca iradiasi. Langkah awal yang dilakukan untuk menentukan kandungan isotop ¹³⁷Cs dan ²³⁵U adalah pemotongan PEB U₃Si₂/Al. Posisi pemotongan dilakukan pada bagian atas, tengah dan bawah dengan berat masing masing 0,095 g; 0,1103 g dan 0,1441g. Potongan PEB U₃Si₂/Al dilarutkan dalam 25 mL HNO₃ 6N dan HCl 6N sehingga diperoleh larutan PEB U₃Si₂/Al. Pemisahan ¹³⁷Cs dilakukan dengan metode penukar kation dan metode pengendapan. Pemisahan ¹³⁷Cs menggunakan metode penukar kation dilakukan dengan memipet 150 μL larutan PEB U₃Si₂/Al pasca iradiasi kemudian ditambahkan zeolit Lampung 1000 mg. Sementara itu, pemisahaan dengan metode pengendapan dilakukan dengan menambahkan serbuk CsNO3 sebagai carrier seberat 700 mg dan HClO₄ Isotop ¹³⁷Cs terikat dengan zeolit berada pada fasa padat dalam bentuk ¹³⁷Cs-zeolit dan isotop U berada pada fasa cair atau supernatan. Proses pengendapan dilakukan di dalam ice batch dengan temperatur -4 °C hingga terbentuk endapan 137CsClO₄. Besarnya kandungan isotop ¹³⁷Cs dalam padatan ¹³⁷Cs-zeolit maupun endapan ¹³⁷CsClO₄ diukur dengan menggunakan spektrometer-γ. Pemisahan ²³⁵U dalam supernatan dilakukan dengan metode kolom penukar anion menggunakan resin Dowex 1x5-NO3. Supernatan sebanyak 500 µL dari masing-masing potongan bagian atas, tengah dan bawah sebagai umpan dimasukkan ke dalam kolom dan ditambahkan resin Dowex 1x8-NO₃ seberat 1,2 g. Efluen U dielusi dengan HNO₃ 8N dan efluen Pu dielusi dengan HCI 0,1N+HF0,036N. Efluen U yang keluar dari kolom dikenakan proses elektrodeposisi untuk selanjutnya diukur kandungan ²³⁵U dengan spektrometer-α. Kandungan ¹³⁷Cs menggunakan metode penukar kation diperoleh sebesar 401,0335 μg/gPEB; 451,1094 μg/gPEB dan 343,9651 μg/g PEB masing-masing untuk potongan bagian atas, tengah dan bawah dengan recovery sebesar 99%, sedangkan dengan metode pengendapan diperoleh ¹³⁷Cs masing masing sebesar 393,4581 µg/g PEB; 452,0525 µg/gPEB dan 330,7839 µg/gPEB dengan recovery sebesar 98%. Kandungan ²³⁵U diperoleh sebesar 45208 μg/gPEB; 50896 μg/gPEB dan 44336 µg/gPEB untuk potongan bagian atas, tengah dan bawah dengan recovery sebesar 68 %.

Kata kunci: isotop ¹³⁷Cs, ²³⁵U, PEB U₃Si₂/Al densitas uranium 2,96 gU/cm³.

ABSTRACT

ANALYSIS OF CESIUM AND URANIUM CONTENT IN IRRADIATED U3Si2/AI FUEL. Separation of fission product isotopes of ¹³⁷Cs and ²³⁵U has been done to determine content of ¹³⁷Cs and ²³⁵U in irradiated U₃Si₂/Al fuel plate of 2.96 gU/cm³ density. The initial step in the determination of 137Cs and 235U content is sample cutting proces. The cutting position was determined at the top middle and bottom part of the plate by an ammount of 0.095 g; 0.1103 g and 0.1441g for each respective position. Each sample was dissolved in 25 mL of HNO₃ 6N dan HCl 6N to obtain irradiated U₃Si₂/Al solution. Separation was carried out by cation exchange and precipitation methods. The separation of ¹³⁷Cs was done by pipeting 150 µL of the irradiated U₃Si₂/Al sample solution and adding it to 1000 mg of Lampung zeolite, while the separation by precipitation methode was done by adding 700 mg of CsNO₃ powder as carrier and HClO₄ to the U₃Si₂/Al sample solution. In the cation exchange method, ¹³⁷Cs would be bound by zeolite in the solid phase in the form of ¹³⁷Cs-zeolite and uranium would stay in the liquid phase or supernatan. The precipitation was done in an ice bath at -4 °C to obtain 137CsClO₄ precipitate. The efluent leaving the column was subjected to electrodeposition process for ²³⁵U content measurement with α -spectrometer. The ¹³⁷Cs content obtained by cation exchange was 401.0335 μ g/g FP (FP = irradiated fuel plate); 451.1094 μg/g FP and 343.9651 μg/g FP for each respective sample position by 99 % recovery, while the ¹³⁷Cs content obtained by precipitation method was 393.4581 μg/g FP; 452.0525 μg/g FP and 330.7839 μg/g FP for each respective sample position by 98 %

recovery. The ²³⁵U content was found to be 45208 μg/g FP; 50896 μg/g FP and 44336 μg/g FP for

Keywords: ¹³⁷Cs, ²³⁵U, U₃Si₂/Al fuel plate, 2,96 gU/cm³ uranium density.

each respective sample position by 68 % recovery.

PENDAHULUAN

Peningkatan distribusi temperatur di dalam bahan bakar PEB U₃Si₂/Al rata-rata sebesar 120 °C menjadi 170 °C, kadangkala hal ini menyebabkan terjadinya hot spot pada posisi tertentu di dalam bahan bakar[1]. Peningkatan distribusi temperatur disebabkan oleh radiasi yang terkorelasi dengan lamanya bahan bakar di dalam reaktor dengan burn up tertentu, sehingga menyebabkan kandungan hasil fisi dan unsur bermassa berat meningkat. Hasil reaksi fisi utama dari 235U dengan neutron adalah 90Sr dan 137Cs[2,3] sedangkan melalui reaksi aktivasi 238U dengan menangkap neutron termal (energi neutron termal 0.025 eV) akan mengalami reaksi fertile menjadi ²³⁹Np, ²³⁸dan ²³⁹Pu.

PEB U₃Si₂/Al dengan densitas uranium 2,96 gU/cm³ pasca iradiasi mengandung beberapa hasil fisi seperti isotop 137Cs, 144Ba, dan 90Sr dan unsur bermassa berat diantaranya adalah isotop U (²³⁸U. ²³⁵U. ²³⁴U. ²³⁶U) dan Pu (²³⁹Pu. ²³⁸Pu). Isotop 144Ba adalah isotop hasil fisi yang masih dapat meluruh dan menghasilkan isotop lain sebagai hasil fisi yang lebih stabil yaitu 90Sr dan 137Cs[4]. Hasil fisi yang digunakan dalam menghitung burn-up adalah jumlah isotop 235U yang terbakar menjadi isotop 137Cs serta 235U sisa yang akan dibandingkan dengan jumlah ²³⁵U awal[5,6]. Hal ini sesuai dengan yang pernah dilakukan terhadap penentuan burn up oleh beberapa peneliti sebelumnya[7].

Penentuan isotop ²³⁵U yang terbakar dapat diketahui dari reaksi fisi 235U dengan neutron maupun reaksi fertil dari 238U. Untuk menentukan kandungan isotop hasil fisi ¹³⁷Cs dan ²³⁵U harus dilakukan pemotongan PEB U₃Si₂/Al densitas uranium 2,96 gU/cm³ pasca iradiasi. Pemotongan PEB U₃Si₂/AI didasarkan kepada proses terjadinya reaksi fisi antara 235U dengan neutron di dalam reaktor dengan fission yield tertentu[8,9]. Posisi pemotongan didukung oleh hasil pengukuran distribusi hasil fisi menggunakan Gamma Scaning pada 3 (tiga) posisi yaitu bawah, tengah dan atas PEB U₃Si₂/AI. Pemotongan PEB U₃Si₂/AI dengan dimensi 10x10x1,37 mm dilakukan di HC 103, kemudian dikirim ke HC 104 untuk dipotong kembali menjadi dimensi 3x3x1,37 mm menggunakan *diamond cutting*.

Potongan PEB U₃Si₂/Al dengan dimensi 3x3x1,37 mm masing-masing pada 3 (tiga) posisi bawah, tengah dan atas, kemudian dilarutkan menggunakan HNO3 6 N dan HCl 6 N[10], untuk selanjutnya dipisahkan isotop hasil fisi dengan unsurunsur bermassa berat. Penentuan isotop hasil fisi dan unsur bermassa berat dapat dilakukan secara mudah dengan menggunakan spektrometer massa, namun karena PTBBN-BATAN belum memiliki alat tersebut, maka untuk menentukan komposisi isotop hasil reaksi fisil maupun unsur bermassa berat sebagai pemancar radiasi α dan γ harus dilakukan pemisahan terlebih dahulu secara radiokimia, untuk selanjutnya dapat dianalisis dengan menggunakan alat spektometer- α ataupun spektometer- γ [9,11].

Tujuan peneltian ini adalah untuk mengetahui kandungan isotop hasil fisi ¹³⁷Cs dan ²³⁵U dalam PEB U₃Si₂/Al pasca iradiasi. Kandungan isotop ¹³⁷Cs maupun ²³⁵U selanjutnya digunakan untuk perhitungan burn up dan akan dibandingkan dengan burn up yang telah dihitung menggunakan program *Origen* oleh RSG-GAS. Hasil perhitungan burn up secara merusak digunakan untuk mempelajari unjuk kerja bahan bakar selama diradiasi di dalam reaktor dan sekaligus bertujuan untuk membuktikan apakah besar burn up yang dihitung dengan software Origen sama dengan burn up dengan cara merusak.

METODOLOGI

PEB U₃Si₂/Al dengan densitas uranium 2,96 gU/cm³ pasca iradiasi dipotong sisi atas, tengah dan bawah (kode T-1, M-1 dan B-1) dengan berat masing masing 0,095 g; 0,1103 g dan 0,1441g, kemudian

dilarutkan di dalam 5 mL HCl dengan konsentrasi 6 N dan 5 mL HNO₃ 6 N[11]. Pemisahan ¹³⁷Cs menggunakan metode penukar kation dilakukan dengan memipet 150 µL larutan PEB U₃Si₂/Al pasca iradiasi kemudian ditambahkan zeolit Lampung 1000 mg[12]. **Proses** penukar kation dilakukan dengan pengocokan selama 1 jam hingga terpisah antara fasa padat dengan fasa cair. Isotop 137Cs terikat dengan zeolit berada pada fasa padat dalam bentuk ¹³⁷Cszeolit dan isotop ²³⁵U dan ²³⁹Pu berada pada fasa cair atau supernatan. Sementara itu, ¹³⁷Cs menggunakan metode pemisahan pengendapan dilakukan dengan menambahkan serbuk $CsNO_3$ sebagai senyawa pembawa (carier) seberat 700 mg dan HCIO₄[11]. Proses pengendapan dilakukan di dalam ice batch dengan temperatur - 4 °C hingga terbentuk endapan ¹³⁷CsClO₄. Besarnya kandungan isotop ¹³⁷Cs dalam padatan ¹³⁷Cs-zeolit maupun endapan ¹³⁷CsClO₄ diukur dengan menggunakan spektrometer-γ. Pemisahan ²³⁵U dari isotop Pu dan pengotor lainnya dalam supernatan dilakukan dengan metode kolom penukar anion menggunakan resin Dowex1x8-NO₃. Supernatan sebanyak 500 µL dalam HNO₃ 8 N suasana sebagai umpan dimasukkan ke dalam kolom yang telah diberi resin Dowex1x8-NO₃ seberat 1,2 g. Isotop Pu terikat oleh resin sedangkan efluen yang mengandung isotop U dan pengotor lainnya keluar kolom. Efluen yang berisi isotop U dan pengotor diuapkan sampai kering dan dilarutkan lagi dalam suasana HCI 12 M sebagai umpan dimasukkan ke dalam kolom yang telah diberi resin Dowex1x8 Cl seberat 1,2 g untuk memisahkan isotop U dari pengotor lainnya. Isotop U terikat resin sedangkan pengotor keluar dari kolom. Kolom kemudian dielusi menggunakan HCI 0,1 M, isotop U keluar dari kolom sebagai efluen U[12]. Efluent U proses elektrodeposisi^[13,14], dikenakan kemudian diukur aktivitasnya menggunakan spektrometer-a dengan waktu 20000 detik. Hasil pengukuran diperoleh

berupa cacahan per detik (cps) yang selanjutnya diestimasi menjadi besaran berat ²³⁵U.

Kandungan isotop di dalam 150 μ L larutan bahan bakar PEB U₃Si₂/Al kemudian dikonversikan terhadap berat PEB U₃Si₂/Al dengan kode T-1, M-1 dan B-1 di dalam 25 mL, sehingga diperoleh berat isotop ¹³⁷Cs maupun ²³⁵U dalam sampel PEB U₃Si₂/Al pasca iradiasi[5,6].

HASIL DAN PEMBAHASAN

Hasil pemotongan PEB U₃Si₂/Al dengan densitas uranium 2,96 gU/cm³ pasca iradiasi posisi pada bagian bawah, tengah dan atas dengan berat masingmasing potongan ditunjukkan pada Tabel 1.

Tabel 1. Berat PEB U₃Si₂/Al pasca iradiasi pada bagian bawah, tengah dan atas

	Berat	Berat	Berat
PEB	bagian	bagian	bagian
U ₃ Si ₂ /Al	atas	tengah	bawah
	(g)	(g)	(g)
Potongan-1	0,095	0,1103	0,1441
Potongan-2	0,081	0,1396	-
Potongan-3	0,087	0,0972	-

a. Pelarutan PEB U₃Si₂/AI densitas uranium 2,96 gU/cm³ pasca iradiasi

Hasil pelarutan potongan PEB U_3Si_2/Al pada posisi bawah, tengah dan atas diperoleh larutan uranium nitrat yang mengandung isotop hasil fisi dan unsurunsur bermassa berat. Larutan uranium nitrat tersebut siap dipisahkan kandungan isotop-nya antara lain ^{137}Cs menggunakan metode penukar kation dan metode pengendapan serta ^{235}U menggunakan metode kolom penukar anoin dengan resin Dowex 1x8 –NO3.

b. Penentuan efisiensi detektor Spektrometer- α/γ

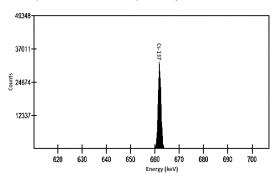
Efisiensi detektor ditentukan terhadap sampel standar berupa larutan maupun sampel padatan. Hal ini dilakukan

untuk menentukan kandungan isotop dalam fasa padat maupun fasa cair PEB U₃Si₂/Al pasca iradiasi. Hasil pengukuran standar ¹³⁷Cs dan ²³⁵U dengan 7 (tujuh) kali

pengulangan diperoleh cacahan yang menunjukkan besarnya efesiensi detektor, akurasi dan presisi pengukuran seperti yang tercantum pada Tabel 2.

	. 0	•		•
Alat Uji	Alat I III Standar		Akurasi	Presisi
Alat Oji	Alat Uji Standar	(%)	(%)	(%)
Spektrometer-γ	Larutan 137Cs	0,2898	0,376	1,875
	Padatan ¹³⁷ Cs-zeolit	0,2983	0,452	2,023
	Endapan ¹³⁷ CsClO ₄	0,2988	0,452	2,023
Spektrometer-α	Planset 235U	0,3782	0,552	3,123

Tabel 2. Data perhitungan efisiensi detektor spektrometer- α/γ [5]


Tabel 2 menunjukkan bahwa efisiensi detektor spektrometer-α/γ tidak mempunyai perbedaan yang signifikan. Demikian halnya dengan besaran akurasi dan presisi yang diperoleh lebih kecil 5 % pada derajat kepercayaan 95 %. Hasil ini menunjukkan bahwa tidak ada perbedaan antara besar aktifitas (Bq/g) hasil pengukuran sampel standar dengan sertifikat.

c. Pemisahan ¹³⁷Cs dalam larutan PEB U₃Si₂/Al pasca iradiasi

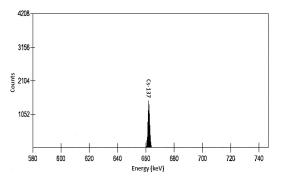
Hasil pemisahan ¹³⁷Cs dengan metode penukar kation menunjukkan bahwa zeolite Lampung terikat dengan ¹³⁷Cs dalam bentuk ¹³⁷Cs-zeolit. Sementara itu, dengan menggunakan metode pengendapan CsNO₃ dan HClO₄, isotop ¹³⁷Cs terendapkan dalam garam CsClO₄. Hasil pengukuran isotop ¹³⁷Cs dalam endapan ¹³⁷Cs-zeolit maupun CsClO₄ menggunakan spektrometer gamma ditunjukkan pada Gambar 1.

Gambar 1 menunjukkan bahwa pada energi 661,45 keV terbentuk spektrum isotop ¹³⁷Cs yang terdapat di dalam PEB U₃Si₂/Al pasca iradiasi. Pengukuran dengan waktu cacah 1500 detik, hanya diperoleh spektrum isotop ¹³⁷Cs dan tidak terlihat adanya spektrum isotop pemancar sinar-γ selain isotop ¹³⁷Cs. Fenomena ini menunjukkan bahwa zeolit Lampung yang digunakan dalam proses penukar kation dan CsNO₃ serta HClO₄ yang digunakan dalam

metode pengendapan sangat selektif terhadap ¹³⁷Cs dan mampu memisahkan isotop ¹³⁷Cs dari isotop lainnya secara baik.

Gambar 1. Spektrum ¹³⁷Cs dalam ¹³⁷Cszeolit maupun endapan CsClO₄

Luasan spektrum yang terbentuk menunjukkan besarnya kandungan ¹³⁷Cs yang terdapat dalam PEB U₃Si₂/Al. Kandungan isotop ¹³⁷Cs yang terdapat di dalam PEB U₃Si₂/Al pasca iradiasi potongan bagian bawah, tengah dan atas kode sampel T-1, M-1 dan B-1 dengan 3 (tiga) kali pengulangan dituangkan pada Tabel 3 dan 4


Recovery pemisahan ¹³⁷Cs dengan menggunakan metode penukar kation maupun metode pengendapan diperoleh cukup besar dengan rerata masing masing sebesar 99% dan 98 %. Hal ini berarti bahwa kedua metode pemisahan tersebut sangat selektif terhadap ion cesium.

Kode Sampel	Berat sampel (150 µL) (µg)	Kandungan 137Cs sebelum zeolit (µg)	Kandungan 137Cs setelah zeolit (µg)	Berat PEB (g)	Kandungan ¹³⁷ Cs (μg/g PEB)	Recovery pemisahan (%)
T-1 ₁	0,1539	0,0287	0,0275	0,0950	490,1255	98,8741
T-1 ₂	0,1538	0,0162	0,0161	0,0810	319,5443	99,1274
T-1 ₃	0,1584	0,0180	0,0177	0,0870	393,4306	99,0668
M-1 ₁	0,1547	0,0398	0,0392	0,1103	465,5873	99,0845
M-1 ₂	0,1546	0,0447	0,0450	0,1396	451,5207	99,5141
M-1 ₃	0,1522	0,0293	0,0296	0,0972	436,2203	99,4945
B-1 ₁	0,1557	0,0343	0,0341	0,1441	343,9651	99,3607

Tabel 3. Kandungan isotop ¹³⁷Cs dalam PEB U₃Si₂/Al dengan metode penukar kation

Tabel 4. Kandungan isotop ¹³⁷Cs dalam PEB U₃Si₂/Al dengan metode pengendapan

Kode Sampel	Berat Sampel (150 µL)	Kandungan 137 Cs sebelum CsNO ₃ (µg)	Kandungan 137 Cs setelah CsNO ₃ (µg)	Berat PEB (g)	Kand. ¹³⁷ Cs (μg/g PEB)	Recovery pemisahan (%)
T-1 ₁	0,1554	0,0284	0,02780	0,095	495,7989	98,1428
T-1 ₂	0,1567	0,0162	0,01598	0,081	313,0409	98,5157
T-1 ₃	0,1575	0,01897	0,01794	0,087	380,5347	98,2456
M-1 ₁	0,1544	0,0374	0,03670	0,1103	464,3187	98,3501
M-1 ₂	0,1540	0,0302	0,03070	0,1396	472,9457	98,4482
M-1 ₃	0,0981	0,01874	0,01895	0,0972	418,8931	98,9123
B-1 ₁	0,1540	0,0341	0,0335	0,1441	330,7838	98,0122

Gambar 2. Spektrum ¹³⁷Cs dalam larutan supernatan

Besar *recovery* pemisahan ¹³⁷Cs baik menggunakan metoda penukar kation maupun metode pengendapan diperoleh diatas 98 %, hal ini didukung oleh masih diperolehnya isotop ¹³⁷Cs walaupun dalam jumlah sedikit di dalam supernatan seperti yang ditunjukkan pada Gambar 2.

Gambar 2 menunjukkan bahwa di dalam supernatan masih diperoleh isotop ¹³⁷Cs. Hal ini terjadi karena pada saat pemisahan fasa cair dari fasa padat dengan cara pemipetan, kemungkinan fasa padat ada yang terpipet dan terikut bersama fasa cair.

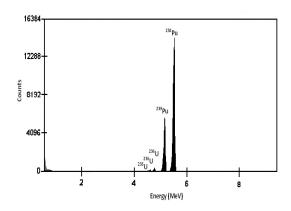
d. Pemisahan uranium dalam larutan PEB U₃Si₂/Al pasca iradiasi

Dalam menentukan kandungan U dalam supernatan sebelum dan sesudah pemisahan menggunakan kolom penukar anion harus dikenakan proses elektrodiposisi terlebih dahulu. **Proses** elektrodeposisi bertujuan untuk mendapatvolume umpan yang Pengukuran uranium sebagai pemancar radiasi sinar alpha mempunyai daya tembus yang sangat kecil sehingga dibutuhkan

(Boybul, Yanlinastuti, Dian Anggraini, Arif Nugroho, Rosika Kriswarini, Aslina Br Ginting)

ketebalan sampel yang sangat tipis dan merata agar dapat dianalisis dengan menggunakan spektrometer-α. Oleh karena perlu diketahui volume umpan elektrodeposisi yang optimum untuk mendapatkan ketebalan sampel (endapan uranium) yang optimum. Pada penelitian ini volume umpan yang digunakan adalah sebesar 500 µL dan merupakan volume optimal yang diperoleh pada penelitian sebelumnya[14,15]

Selain volume umpan, hal penting harus diketahui adalah besar yang ²³⁵U kandungan sebelum pemisahan (pengukuran secara langsung) dan recovery ^{235}U dengan menggunakan pemisahan U₃O_{8.} Besar recovery larutan standar ²³⁵U dengan metode kolom pemisahan penukar anion menggunakan resin Dowex 1x5-NO₃ ditunjukkan pada Tabel 5.


Tabel 5. Recovery pemisahan ²³⁵U menggunakan standar U₃O₈ [4,13]

Sampel	Kandungan ²³⁵ U sertifikat (µg)	Kandungan ²³⁵ U pengukuran (μg)	Recovery (%)
Standar ²³⁵ U	3,9888	2,7207	68,21

Tabel 5 menunjukkan bahwa *recovery* pemisahan 235 U menggunakan standar larutan U_3O_8 20 % dengan metode penukar anion diperoleh sebesar 68,21 % pada kondisi volume umpan yang optimum sebesar 500 µL.

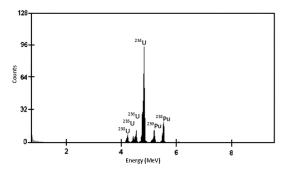
e. Pengukuran dan analisis ²³⁵U sebelum pemisahan

Hasil pengukuran isotop 235 U sebelum mengalami pemisahan (sebelum ditambah resin Dowex 1x8 menggunakan spektroketer- α diperoleh 4 (empat) spektrum isotop-U yaitu 238 U pada energi $E\alpha = 4,194$ MeV, 235 U ($E\alpha = 4,397$ MeV), isotop 236 U ($E\alpha = 4,494$ MeV) dan isotop 234 U pada energi $E\alpha = 4,777$ MeV seperti yang ditunjukkan pada Gambar 3.

Gambar 3. Spektrum isotop-U sebelum pemisahan.

Besarnya kandungan isotop-U (²³⁴U, ²³⁵U, ²³⁶U dan ²³⁸U) dalam sampel dapat diketahui dengan cara menghitung cacahan dari luas spektrumnya masing-masing ditunjukkan pada Tabel 6.

Tabel 6. Kandungan ²³⁵U di dalam supernatan PEB U₃Si₂/Al sebelum pemisahan


Kada Campal	Berat Sampel (150 µL)	Berat PEB	Kand. ²³⁵ U	Kand. ²³⁹ Pu
Kode Sampel	(g)	(g)	(µg/g PEB)	(µg/g PEB)
T-1	0,1553	0,0950	66400	2,3854
M-1	0,1549	0,1103	95665	2,3854
B-1	0,1556	0,1441	65128	2,4734

Selain isotop U diperoleh juga 2 (dua) spektrum isotop Pu yaitu 239 Pu pada energi E α = 5,155 MeV dan 238 Pu pada energi E α =

5,486 MeV seperti yang terlihat pada Gambar 3.

f. Pengukuran dan analisis ²³⁵U setelah pemisahan

Pengukuran dan analisis ²³⁵U setelah dilakukan pemisahan menggunakan resin Dowex 1x8-NO₃ ditunjukkan pada Gambar 4.

Gambar 4. Spektrum efluen isotop-U setelah pemisahan

Efluen U keluar dari kolom, sedangkan efluen isotop lainnya terikat bersama resin Dowex 1x8-NO₃ di dalam kolom. Efluen isotope lainnya selanjutnya dielusi menggunakan HCl 0,1 N dan HF 0.036 N sehingga isotop lainnya keluar dari kolom[16]. Efluen sebagai U pemisahan ²³⁵U dalam PEB U₃Si₂/Al bagian potongan sampel T-1, M-1 dan B-1 setelah dikenakan proses elektrodeposisi, selanjutnya dilakukan analisis menggunakan spektrometer-α. Hasil pengukuran isotop ²³⁵U sesudah dilakukan pemisahan dengan resin Dowex 1x8 ditunjukkan pada Gambar 4.

Besarnya kandungan isotop 235 U dalam potongan bagian T, M dan B dari PEB U_3Si_2 /Al sesudah penambahan resin Dowex ditunjukkan pada Tabel 7.

Tabel 7. Kandungan ²³⁵U di dalam supernatan PEB U₃Si₂/Al setelah pemisahan

Kode Sampel	Berat Sampel (150 μL) (g)	Berat PEB (g)	Kand. ²³⁵ U (μg/g PEB)
T-1	0,1553	0,0950	45208
M-1	0,1549	0,1103	50896
B-1	0,1556	0,1441	44336

Gambar 3 dan 4 menunjukkan bahwa hasil pemisahan isotop U di dalam supernatan PEB U₃Si₂-Al pasca iradiasi masih belum sempurna, karena pada pemungutan isotop U masih terkandung isotop Pu demikian juga sebaliknya. Hal ini menunjukkan bahwa parameter metode yang digunakan untuk pemisahan isotop U belum optimal, sehingga masih diperlukan metode yang valid untuk pemisahan untuk kedua isotop tersebut. Oleh karena itu, selanjutnya akan dilakukan parameter yang meliputi jumlah resin, waktu tinggal di dalam kolom, kecepatan alir, volume eluent. Data kandungan isotop ¹³⁷Cs dan ²³⁵U, selanjutnya digunakan sebagai dasar dalam perhitungan burn up PEB dengan U₃Si₂/Al densitas uranium 2,96 gU/cm³ pasca iradiasi.

SIMPULAN

Telah diperoleh kandungan isotop ¹³⁷Cs dan ²³⁵U di dalam PEB U₃Si₂/Al pasca iradiasi. Kandungan isotop 137Cs pada potongan bagian atas, tengah dan bawah menggunakan metode penukar diperoleh masing masing sebesar 401,0335 μg/gPEB; 451,1094 μg/gPEB dan 343,9651 μg/g PEB dengan recovery sebesar 99%, sedangkan dengan menggunakan metode pengendapan diperoleh masing-masing 393,4581 µg/g PEB; 452,0525 µg/gPEB dan 330,7839 µg/g PEB dengan recovery sebesar 98 %. Kandungan ²³⁵U diperoleh dengan metode kolom penukar anion untuk potongan bagian atas, tengah dan bawah diperoleh sebesar 45208 µg/gPEB; 50896 µg/gPEB 44336 µg/gPEB dengan recovery sebesar 68%. Untuk meningkatkan recovery pemisahan uranium perlu dilakukan evaluasi parameter metode meliputi jumlah resin, waktu tinggal di dalam kolom, kecepatan alir, serta pemilihan jenis pereaksi atau elusi yang tepat.

UCAPAN TERIMA KASIH

Ucapan terima kasih disampaikan kepada Bapak Sungkono, selaku Kepala Bidang Uji Radiometalurgi beserta seluruh rekan-rekan Kelompok Fisiko Kimia yang telah bersama-sama melakukan penelitian ini sehingga makalah ini dapat terwujud.

DAFTAR PUSTAKA

- [1] I. P. Hastuti, T. M. Sembiring, Supardjo, Suwardi, "LAK Insersi Elemen Bakar Uji Silisida 3 pelat Tingkat Muat 2,96 dan 5,8 gU/cm³ di Teras RSG-GAS", PRSG-BATAN, 2010.
- [2] J. Real, F. Persin, C. Cauret, "Mechanisms of Desorption Cesium and Stronsium Aerosols Deposited on Urban Surfaces", Journal of Environmental Radioactivity, vol. 62 no. 1, 2012.
- [3] H. Simger, F.Arnold, H. Aufurhoff, R.Bauman, F. Kaether, S. Lindemann, L.Rauch, "Detection of ¹³³Xe from the Fukusima Nuclear Power Plant in The Upper Troposphere above Germany", *Journal of Evironmental Radioactivity*, vol.132, 2014.
- [4] A.B. Ginting, D. Anggraini, A. Nugroho, "Pengaruh Penambahan Zeolit Terhadap Pemisahan Isotop ¹³⁷Cs Dalam Pelat Elemen Bakar U₃Si₂-Al Pasca Iradiasi", *Jurnal Teknologi Bahan Buklir*, vol.7 no.2, 2011.
- [5] A. B. Ginting, H. P. Liem, "Absolute Burn Up Measurement of LEU Silicide Fuel Plate Irradiated in the RSG GAS Multipurpose Reactor by Destructive Radiochemical Technique", Journal Annals of Nuclear Energy, 2015.

- [6] A. B. Ginting, Boybul, A. Nugroho, D. Anggraini, R. Kriswarini, "Pemisahan dan analisis ¹³⁷Cs dan ²³⁵U dalam PEB U₃Si₂-Al pasca iradiasi untuk penentuan burn up," *Jurnal Teknologi Bahan Nuklir*, vol. 11 no.2, 2015.
- [6] American Standar Test Methods, "Standar practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis", ASTM No C-1411-01, vol. 12 No.1, 2000.
- [7] A. B. Ginting, "Analisis isotop transuranium dalam bahan bakar PEB U₃Si₂-Al pasca iradiasi menggunakan spektrometer alpha", Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania, vol. 17 no. 2, 2011.
- [8] S. Indaryati, "Pemilihan beberapa jenis pelarut untuk PEB U₃Si₂-Al pasca iradiasi", Prosiding Hasil Penelitian, Pusat Teknologi Bahan Bakar Nuklir-BATAN, Serpong, 2009.
- [9] A. B. Ginting, D. Anggraini, "Metode pengendapan dan metode penukar kation pada proses pemisahan cesium di dalam bahan bakar U₃Si₂-Al", Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania, vol. 22 no. 2, 2016.
- [10] Boybul, Yanlinastuti, S. Indaryati, I. Haryati, A. Nugroho, "Penentuan kandungan isotop ²³⁵U dalam PEB U₃Si₂-Al densitas uranium 2,96 gU/cm³ untuk perhitungan burn up", *Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania*, vol. 21 no. 3, 2015.
- [11] O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, C. Cosma, "Uranium electrodeposition for alpha spectrometric source preparation", Journal of Radioanalytical and Nuclear Chemistry, vol. 298 no.2, pp. 1335–1339, 2013.
- [12] Yanlinastuti, Boybul, A. B. Ginting, D. Anggraini, "Pengaruh parameter proses elektrodeposisi terhadap penentuan berat isotop ²³⁵U dalam PEB U₃Si₂/AI pasca

2016.

- iradiasi", *Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania*, vol. 22 no. 2,
- [13] Muzakky, B. Irianto, "Korelasi antara waktu tinggal arus dan randemen pada penentuan U-234, U-235 dan U-238 dengan spektrometri alpha", Prosiding Seminar Nasional, Yogyakarta 22 Oktober 2013, Pusat
- Teknologi Akselator dan Proses Bahan –BATAN.
- [14] K.Sawada, Y. Enokida, M. Kamiya, T.Koyama, K. Aoki, "Distribution coefficients of U(VI), nitric acid and FP Elements in extraction from concentrated aqueous solutions of nitrates by 30% tri-n-butylphosphate solution", Journal of Nuclear Science and Technology, vol. 46 no.1, 2009.